Operating Systems
Lecture 9

Scheduling

Prof. Mengwel Xu

11/5/24

Recap: Cache Hierarchy

* Memory as cache for secondary disk

TLB

Cache

—> Memory

Mengwei Xu @ BUPT

Disk

 §

Recap: Demand Paging (B X4 1)

* Modern programs require a lot of physical memory, but they don't use
all their memory all of the time

- 90-10 rule: programs spend 90% of their time in 10% of their code
- Wasteful to require all of user’'s code to be in memory

* Solution: use main memory as cache for disk
- “lazy” memory allocation

* An illusion of infinite memory
- In-use virtual memory can be bigger than physical memory
- Combined memory of running processes much larger than physical memory
1 More programs fit into memory, allowing more concurrency
- Principle: page table for transparent management

11/5/24 Mengwei Xu @ BUPT 3

Recap: Demand Paging as Cache

* What is block size?
- | page
* What is organization of this cache (i.e. direct-mapped, set-associative, fully-
associative)?

- Fully associative: arbitrary virtual — physical mapping

* How do we find a page in the cache when look for it/
- First check TLB, then page-table traversal

* What is page replacement policy? (1.e. LRU, Random...)

- This requires more explanation... (kinda LRU)

* What happens on a miss!
- Go to lower level to fill miss (1.e. disk)

* What happens on a write! (write-through, write back)
- Write-back — need dirty bit!

11/5/24 Mengwei Xu @ BUPT 4

11/5/24

Recap: Implementation of mmap

* When program accesses an invalid address

— N 0O N Oy U AW N —

.O

[MMU] TLB miss; full page table lookup

MMU + OS] Trapping into page fault handler
(O3]
(O3]
(OS]
[CPU] Disk interrupt when read completes

OS] Updating page table by marking the entry as valid
OS] Resume process

[MMU] TLB miss; full page table lookup

Convert virtual address to file offset
Allocate a new page frame in memory
Read data from disk to the memory (blocked)

MMU] TLB update

Mengwei Xu @ BUPT

Recap: Implementation of mmap

page is on
backing store

operating
system

@

reference
trap

®

load M |« i

®

restart page table
instruction

free frame i« — >
® @

reset page bring in
table missing page

physical
memory

11/5/24 Mengwei Xu @ BUPT 6

Recap: Page Eviction Policy

Use bit=0

* Clocking algorithm: approximating LRU

* Implementation with the use bit

- Inrtialized to O in page table I
- Set to | whenever there Is a page access ‘

* When we need to evict a page, we look
at the page under the hand:
- If its use bit = |, clear it and move the hand,
repeat;
- If its use bit = 0, evict 1t

Use bit = |

Page reference stream:

Recap: Nt Chance Version of Clock Algorithm

* N chance algorithm: Give page N chances
- OS keeps counter per page: # sweeps
- On page fault, OS checks use bit:
O | — clear use and also clear counter (used in last sweep)

0 0 — increment counter; if count=N, replace page
- Means that clock hand has to sweep by N times without page being used before page is replaced

* How do we pick N?
- Why pick large N? Better approximation to LRU
Q If N ~ IK really good approximation
- Why pick small N? More efficient

O Otherwise might have to look a long way to find free page

* What about dirty pages!?

- Takes extra overhead to replace a dirty page, so give dirty pages an extra chance before replacing?

- Common approach:

O Clean pages, use N=|
U Dirty pages, use N=2 (and write back to disk when N=1)

11/5/24 Mengwei Xu @ BUPT

Recap: Details of Clock Algorithms

* Which bits of a PTE entry are useful to us!

- Use: Set when page Is referenced; cleared by clock algorithm
- Modified: set when page Is modified, cleared when page written to disk
- Valid: ok for program to reference this page

- Read-only: ok for program to read page, but not modify
For example for catching modifications to code pages!

* Do we really need hardware-supported “modified” bit?
- No. Can emulate it (BSD Unix) using read-only bit

Q Initially, mark all pages as read-only, even data pages
L On write, trap to OS. OS sets software “modified” bit, and marks page as read-write.
L Whenever page comes back in from disk, mark read-only

11/5/24 Mengwei Xu @ BUPT 9

Scheduling (ifE) Concept

* Why we need scheduling! Multitasks and Concurrency.
* Scheduling is only useful when there Is not enough resources

* Preemption (& 8) is the basic assumption for fine-grained scheduling
- Either by timer interrupts or other kinds of interrupts

* Who schedules processes/threads?
- Mostly by OS.
- User-level thread libraries schedule the threads by themselves.

11/5/24 Mengwei Xu @ BUPT 10

Scheduling Policy Goals (1/3)

* Minimize Response Time
- Minimize elapsed time to do an operation (or job)
- Response time Is what the user sees:
 Time to echo a keystroke in editor
 Time to compile a program

1 Real-time tasks: Must meet deadlines imposed by World

11/5/24 Mengwei Xu @ BUPT I

Scheduling Policy Goals (2/3)

* Minimize Response Time
* Maximize Throughput

- Maximize operations (or jobs) per second
- Throughput related to response time, but not identical:

 Minimizing response time will lead to more context switching than if you
only maximized throughput

- Two parts to maximizing throughput
1 Minimize overhead (for example, context-switching)
[Efficient use of resources (CPU, disk, memory, etc)

11/5/24 Mengwei Xu @ BUPT 12

Scheduling Policy Goals (3/3)

* Minimize Response Time

* Maximize Throughput

* Fairness
- Share CPU among users in some equitable way
- Fairness 1s not minimizing average response time:
[Better average response time by making system less fair

11/5/24 Mengwei Xu @ BUPT 13

First-Come, First-Served (FCFS) Scheduling

* First-Come, First-Served (FCFS, ¢ &5t AR S5)
- Also “First In, First Out” (FIFO, Feit 5t) or “Run until done”
d In early systems, FCFS meant one program scheduled until done
1 Now, means keep CPU until thread blocks

* Example: Process Burst Time
P, 24
P, 3
P 3

- Suppose processes arrive in the order: P, , P, , P;
The Gantt Chart (H4%[&]) for the schedule is:

P, P, | P

First-Come, First-Served (FCFS) Scheduling

* Example continuea:

P, P, | P

0 24 27 30

- Waiting time for P, = 0;P, =24;,P;=2/
- Average waiting time: (0 + 24 +2/7)/3 =17
- Average Completion time: (24 + 27 + 30)/3 = 2/

 Convoy effect (FPARZIRL): short process behind long process

11/5/24 Mengwei Xu @ BUPT I5

First-Come, First-Served (FCFS) Scheduling

* Example continuea:
- Suppose that processes arrive in order: P, , P;, P, Now, we have:

P, | P, P,

0 3 6 30
- Wiaiting time for P, = 6;P, = 0.P3= 3
- Average waiting time: (6 + 0 + 3)/3 =3
- Average Completion time: (3 + 6 + 30)/3 = |3
* |n second case:
- Average waiting time is much better (before it was |7)
- Average completion time Is better (before it was 27)
* FIFO Pros and Cons:
- Simple (+)
- Short jobs get stuck behind long ones (-)
Safeway: Getting milk, always stuck behind cart full of small items

Shortest Job First (S)JF) Scheduling

* Shortest Job First (AZ1E55L5T) Scheduling

- Always schedule the job with the shortest remaining time (so sometimes it's
also called shortest-remaining-time-first, SRTF)

- It theoretically minimizes the average response time, why?

Shortest Job First (S)JF) Scheduling

* Shortest Job First (AZ1E55L5T) Scheduling

- Always schedule the job with the shortest remaining time (so sometimes it's
also called shortest-remaining-time-first, SRTF)

- It theoretically minimizes the average response time, why?

* Comparison of SRTF with FCFS

- What if all jobs the same length?

1 SRTF becomes the same as FCFS (i.e. FCFS is best can do if all jobs the
same length)

- What If jobs have varying length?
1 SRTF: short jobs not stuck behind long ones

Shortest Job First (S)JF) Scheduling

* Shortest Job First (AZ1E55L5T) Scheduling

- Always schedule the job with the shortest remaining time (so sometimes it's
also called shortest-remaining-time-first, SRTF)

- It theoretically minimizes the average response time, why?

» Con# |: starvation (YJL4k)
- If small jobs keep coming, the long jobs will not be served

- Fairness issue

* Con#2: implementation
- It's hard to know the task remaining time

Round Robin (RR) Scheduling

 Round Robin (32 18)FE) Scheme
- Each process gets a small unit of CPU time (time quantum), usually 10-100
milliseconds
- After quantum expires, the process is preempted and added to the end of the
ready queue.
* n processes In ready queue and time quantum is g =
1 Each process gets |/n of the CPU time
1 In chunks of at most g time units
1 No process waits more than (n-1)g time units

11/5/24 Mengwei Xu @ BUPT 20

Round Robin (RR) Scheduling

¢ Example: Process Burst Time
P 53
P, 8
P, 68
P, 24
- quantum=20

- Average waiting time!
- Average completion time!

11/5/24 Mengwei Xu @ BUPT 21

Round Robin (RR) Scheduling

¢ Example: Process Burst Time
P, 53
P, 8
P, 68
P, 24

- The Gantt chart (quantum=20) is: P. P, |Ps |P,|P, [Py |P, P, [P, P,
O 20 28 48 68 88 108 112 125 145 153
- Waiting time for P =(68-20)+(1 12-88)=7/2
P,=(20-0)=20
P;=(28-0)+(88-48)+(125-108)=85
P,=(48-0)+(108-68)=88
- Average waiting time = (/2+20+85+88)/4=66)4
- Average completion time = (125+28+153+112)/4 = 1042

Round Robin (RR) Scheduling

* Thus, Round-Robin Pros and Cons:
- Better for short jobs, Fair (+)
- Context-switching time adds up for long jobs (-)

11/5/24 Mengwei Xu @ BUPT 23

Round Robin (RR) Scheduling

* Thus, Round-Robin Pros and Cons:
- Better for short jobs, Fair (+)
- Context-switching time adds up for long jobs (-)

* How do you choose time slice!

- Too large: Response time suffers
O What if infinite (o0)? Falls back to FIFO
- Too small: Throughput suffers

11/5/24 Mengwei Xu @ BUPT 24

Round Robin (RR) Scheduling

* Thus, Round-Robin Pros and Cons:
- Better for short jobs, Fair (+)
- Context-switching time adds up for long jobs (-)

* How do you choose time slice!

* Actual choices of timeslice:
- Inrtially, UNIX timeslice one second:
1 Worked ok when UNIX was used by one or two people.
1 What if three compilations going on? 3 seconds to echo each keystroke!
- Need to balance short-job performance and long-job throughput:
 Typical time slice today is between [0ms — [00ms
U Typical context-switching overhead is O.ms — Ims
1 Roughly 19 overhead due to context-switching

11/5/24 Mengwei Xu @ BUPT 25

Comparing FCFS and RR

* Assuming zero-cost context-switching time, is RR always better than FCFS?

° Simple example: |0 jobs, each take 100s of CPU time

RR scheduler quantum of s
All jobs start at the same time

* Completion Times:

Job # FIFO RR
I 100 91
2 200 992
9 900 999
- Average response time 10 1000 1000

O Bad when all jobs same length

* Also: Cache state must be shared between all jobs with RR but can be

devoted to each job with FIFO

- Total time for RR longer even for zero-cost switch!

Choice of Time Quantum for RR

P, | P4 P, P,
O 8 32 85 153
Quantum P, P, P; P, Average
Best FCFS 32 0 85 8 314
Q=1 84 22 85 57 62
Wait Q=5 82 20 85 58 6%
Time Q=28 80 8 85 56 574
Q=10 82 10 85 68 6%
Q=120 72 20 85 88 66'/4
Worst FCFS 68 |45 0 121 832
Best FCFS 85 8 153 32 69
Q=1 137 30 153 8l 1002
. Q=5 |35 28 153 82 994
%‘r’n";"'et'°“ Q=8 133 |16 153 80 95
Q=10 |35 |18 153 92 994
Q=20 |25 28 153 112 104/,
Worst FCFS 121 153 68 145 12134

Strict Priority Scheduling

Priority 3

[—b

Priority 2

Job |

L

Job2 [=P{Job 3

ﬁ

Priority |

Job 4

Priority 0

>

Job5 t={job6 =] job 7

e Strict Priority Scheduling (& LA E)
- Always execute highest-priority runnable jobs to completion
- Each queue can be processed in RR with some time-gquantum

e Problems:

- Starvation: Lower priority jobs don't get to run because higher priority jobs

- Deadlock: Priority Inversion ({t.5% 2%t &H

%)

1 Not strictly a problem with priority scheduling, but happens when low
priority task has lock needed by high-priority task

Strict Priority Scheduling

Job2 [=P{Job 3

Priority 3 —> Job | =

Priority 2 [={]ob 4

Priority |

Priority 0 [==>{Job5 t={job6 = job 7

e Strict Priority Scheduling (P& LA E)
- Always execute highest-priority runnable jobs to completion
- Each queue can be processed in RR with some time-quantum

e Problems:

- Starvation: Lower priority jobs don't get to run because higher priority jobs

- Deadlock: Priority Inversion ({t.5% 2%t &H

* How to fix! Dynamic priority

- Dynamic priorities — adjust base-level priority up or down based on heuristics
about interactivity, locking, burst behavior, etc...

%)

Earliest Deadline First (EDF)

* Tasks periodic with period P and computation C in each period: (F C)
* Preemptive priority-based dynamic scheduling

* Each task Is assigned a (current) priority based on how close the
absolute deadline Is

* The scheduler always schedules the active task with the closest absolute
deadline

T1:(4’1). — 1 - : . — 1 - | 1 .»
n=c2 [. .
1,=021] — - - L

0 5 10 |5

11/5/24 Mengwei Xu @ BUPT 30

Scheduling Fairness

 What about fairness?

- Strict fixed-priority scheduling between queues is unfair (run highest, then next,
eto):
 Long running jobs may never get CPU
1 In Multics, shut down machine, found |0-year-old job

- Must give long-running jobs a fraction of the CPU even when there are shorter
jobs to run

- Tradeoff: fairness gained by hurting avg response time!

11/5/24 Mengwei Xu @ BUPT 31

Scheduling Fairness

* How to implement fairness?
- Could give each queue some fraction of the CPU

d What if one long-running job and 100 short-running ones?

[Like express lanes in a supermarket—sometimes express lanes get so long,
get better service by going into one of the other lines

- Could increase priority of jobs that don't get service
1 What is done in some variants of UNIX
 This is ad hoc—what rate should you increase priorities?

1 And, as system gets overloaded, no job gets CPU time, so everyone
Increases In priority=>Interactive jobs suffer

11/5/24 Mengwei Xu @ BUPT 32

Scheduling Fairness

* |f every tasks need the same resource, fairness is easy: RR.
* Yet, tasks may demand different: compute-bound vs. I/O bound

* Max-Min fairness: iteratively maximize the minimum allocation given to a
particular process (or threads/users/applications) until all resources are
assigned

- Mostly used in network

11/5/24 Mengwei Xu @ BUPT 33

Multi-level Feedback Queue (MFQ) Scheduling

« Multi-level Feedback Queue (MFQ, 262 It i BA A 1A J&)

- Achieves responsiveness (short jobs quickly as SJF), low overhead (minimizing
the preemptions and scheduling decision time), and starvation-free (as RR), and
fairness (approximately max-min fair share).

M Yet, it does not perfectly achieve any of these goals.
- Widely used in commercial OSes such as Windows, MacOS, and Linux.

* Assuming a mix of two kinds of workloads

(1) Interactive tasks (e.g., waiting for user keyboard input): using CPU for a short
time, then yield for I/O waiting. Low latency Is critical.

(2) CPU-intensive tasks (e.g., compressing files): using CPU for a long period of
time. The response time often does not matter much.

11/5/24 Mengwei Xu @ BUPT 34

Multi-level Feedback Queue (MFQ) Scheduling

* A naive version of MFQ: maintaining many tasks queues with different
priorities, and use following schedule rules.
- Rule I:If Priority(A) > Priority(B), A runs (B doesn't).
- Rule 2:If Priority(A) = Priority(B), A & B run in RR.

* The key here Is how to set the priority.

- Inturtively, it a job repeatedly relinquishes the CPU while waiting for input from
the keyboard, it shall be kept in high priority.

- Otherwise, if a job uses CPU intensively for long periods of time, its priority shall
be reduced.

11/5/24 Mengwei Xu @ BUPT 35

Multi-level Feedback Queue (MFQ) Scheduling

* A naive version of MFQ: maintaining many tasks queues with different
priorities, and use following schedule rules.

- Rule I:If Priority(A) > Priority(B), A runs (B doesn't).
- Rule 2:If Priority(A) = Priority(B), A & B run in RR

* Our solution: assign a quota for each job at a given priority level, and
reduces Its priority once the quota Is used up.

- Rule 3:When a job enters the system, it Is placed at the highestpriority (the
topmost queue).

- Rule 4a: If a job uses up its allotment while running, its priority isreduced (i.e., it
moves down one queue).

- Rule 4b: If a job gives up the CPU (for example, by performing an I/O operation)

before the allotment is up, it stays at the samepriority level (i.e., its allotment is
reset).

11/5/24 Mengwei Xu @ BUPT

36

Multi-level Feedback Queue (MFQ) Scheduling

* A few illustrative examples of our naive MFQ design.

Q2 Q2I Q2I

0 50 100 150 200 0 50 100 150 200 O 50 100 150 200
(2) A single long-running job (b) A single long-running job (c) A single long-running job
and a short-running job and an interactive job that

only uses CPU for Ims per
time then waits for I/O

Multi-level Feedback Queue (MFQ) Scheduling

* There are many Issues with this naive version of MFQ.

- Starvation: if there are "“too many” interactive jobs In the system, they will
consume all CPU time, and thus long-running jobs will starve.

11/5/24 Mengwei Xu @ BUPT 38

Multi-level Feedback Queue (MFQ) Scheduling

* There are many Issues with this naive version of MFQ.

- Starvation: if there are "“too many” interactive jobs In the system, they will
consume all CPU time, and thus long-running jobs will starve.

* Solution# |: priority boost
- Rule 5: After some time period S, move all the jobs in the systemto the topmost

queue.
Q2 Q2

_ _ 1L
Qf Qf

I I |
Qo Qo

[.

Figure 8.4: Without (Left) and With (Right) Priority Boost

11/5/24 Mengwei Xu @ BUPT 39

Multi-level Feedback Queue (MFQ) Scheduling

* There are many Issues with this naive version of MFQ.
- Starvation: if there are "“too many” interactive jobs In the system, they will
consume all CPU time, and thus long-running jobs will starve.
* Solution# |: priority boost

- Rule 5: After some time period S, move all the jobs in the systemto the topmost
queue.

- S shall be nerther too large or too small. Why?

11/5/24 Mengwei Xu @ BUPT 40

Multi-level Feedback Queue (MFQ) Scheduling

* There are many Issues with this naive version of MFQ.

- Starvation: if there are "“too many” interactive jobs In the system, they will
consume all CPU time, and thus long-running jobs will starve.

* Solution# |: priority boost

- Rule 5: After some time period S, move all the jobs in the systemto the topmost
queue.

- S shall be neither too large or too small. VWhy?

* Solution#2: time slice across queues

- each queue gets a certain amount of CPU time
- e.g, /0% to highest, 20% next, 0% lowest

* More solutions..

11/5/24 Mengwei Xu @ BUPT 41

Multi-level Feedback Queue (MFQ) Scheduling

* There are many Issues with this naive version of MFQ.

Starvation: iIf there are "“too many’ interactive jobs In the system, they will
consume all CPU time, and thus long-running jobs will starve.

Countermeasure: user action that can foll intent of OS designers, e.g., put in a
bunch of meaningless I/O to keep job’s priority high.

How to parameterize the scheduler: how many queues should there be! How
big should the time slice be per queue!?

More..

* Think of possible solutions to them!?

Multi-level Feedback Queue (MFQ) Scheduling

* To further extend the MFQ design: Fach queue has its own scheduling
parameters or even different algorithms!

d e.g. foreground — RR, background — FCFS

 Sometimes multiple RR priorities with quantum increasing exponentially
(highest: I ms, next: 2ms, next: 4ms, etc)

* Adjust each job’s priority as follows (detalls vary)
- Job starts in highest priority queue
- If timeout expires, drop one level
- If timeout doesn't expire, push up one level (or stay at the same one)

11/5/24 Mengwei Xu @ BUPT 43

Multi-level Feedback Queue (MFQ) Scheduling

Assume we have 4 processes in a system with multilevel

* Atest feedback queue scheduling policy. All the processers arrived
ate time 0 and located in the highest level queue in the order
of their IDs (1 to 4) a) Calculate the average waiting time and
average turnaround time.

Process Burst Time _ —
P; 11
P2 26 —*Lquantum =16 /-l;—_’
P, 31
¥ - 45 A]

— FCFS

b) If a new process P; enters the system at time 35 how the
gantt chart is going to change?

11/5/24 Mengwei Xu @ BUPT 44

Fair-share Scheduler

* This type of scheduler aims to guarantee that each job obtain a certain
percentage of CPU time.

- Also known as “proportional-share scheduler.

* Next, we will discuss two types of fair-share scheduler.

- Lottery scheduling
- The Linux Completely Fair Scheduler (CFS)

11/5/24 Mengwei Xu @ BUPT 45

Lottery Scheduling

* Lottery Scheduling
- Give each job some number of lottery tickets
- On each time slice, randomly pick a winning ticket

- On average, CPU time is proportional to number of tickets given to each job
(but not deterministically!)

* Assuming there are two jobs: A with /5 tickets, B with 25 tickets
- Here, B gets run 4 out of 20 time slices (20%).
- With more tries, B is more likely to get 25% slices.

Here is an example output of a lottery scheduler’s winning tickets:

63 85 70 39 76 17 29 41 36 39 10 99 68 83 63 62 43 0 49 12

Here is the resulting schedule:

A A A A A A A A A A A A A A A A
B B B B

11/5/24 Mengwei Xu @ BUPT 46

Lottery Scheduling

* Lottery Scheduling
- Give each job some number of lottery tickets
- On each time slice, randomly pick a winning ticket
- On average, CPU time is proportional to number of tickets given to each job

* How to assign tickets?
- To approximate SRTF short running jobs get more, long running jobs get fewer
- To avoid starvation, every job gets at least one ticket (everyone makes progress)

* Advantage over strict priority scheduling: behaves gracefully as load
changes

- Adding or deleting a job affects all jobs proportionally, independent of how
many tickets each job possesses

11/5/24 Mengwei Xu @ BUPT 47

Lottery Scheduling

* Lottery Scheduling Example
- Assume short jobs get |0 tickets, long jobs get | ticket

short jobs/ % of CPU each | % of CPU each
long jobs short jobs gets long jobs gets
/1 2 N
0/2 2 N
2/0 2 N
10/1 2 N
/10 2 N

Lottery Scheduling

* Lottery Scheduling Example
- Assume short jobs get |0 tickets, long jobs get | ticket

short jobs/ % of CPU each | % of CPU each
long jobs short jobs gets long jobs gets
/1 21% 9%

0/2 N/A 50%

2/0 50% N/A
10/1 2.9% 0.99%

/10 50% 5%

Lottery Scheduling

* Implementing lottery scheduling is amazingly easy!
- One of the important feature of it.

* You only need
|. A good random number generator

2. A data structure to track the processes of the system and the total number of
tickets

11/5/24 Mengwei Xu @ BUPT 50

11/5/24

Lottery Scheduling

O 00 NN s N =

e e e e e e
S s W N = O

Job:A Job:B Job:C

head — 1 .000 — Tix:50 > Tix:250

—» NULL

// counter: used to track if we’ve found the winner yet

int counter = 0;

// winner: call some random number generator to

// get a value >= 0 and <= (totaltickets - 1)

int winner = getrandom (0, totaltickets);

// current: use this to walk through the list of
node_t xcurrent = head;
while (current) {
counter = counter + current—>tickets;
if (counter > winner)
break; // found the winner
current = current—->next;

}

// "current’ is the winner: schedule it...

Mengwei Xu @ BUPT

Jjobs

An optimization:
organize the list
in sorted order

51

Completely Fair Scheduler (CFS)

* The default Linux scheduler since v2.6.23 (2007).
- The goal of CFS: to fairly divide a CPU evenly among all competing processes.

* CFS uses a counting-based technigue known as virtual runtime
(vruntime)
- As each process runs, it accumulates vruntime, e.g., In proportion with the
physical (real) time.
- When a scheduling decision occurs, CFS will pick the process with the lowest
vruntime to run next.

* How does CFS know when to stop the running process?
- The scheduling time slice. Either too large or small. Why!?

Completely Fair Scheduler (CFS)

* CFS decides the scheduling interval based on the number of currently
running processes.

- sched_latency divided by the number of processes
Q why?
- E.g, 48 milliseconds / 4 processes = |2 milliseconds

- What if there are too many processes! Set a minimal value of time slice:
min_granularity.

ABCDABCD A B A B A B

0 50 100 150 200 250
Time

Completely Fair Scheduler (CFS)

* CFS also enables controls over process priority, enabling users to give
some processes a higher share of the CPU.
- Using a UNIX mechanism known as the nice level of a process.
- Larger nice, lower priority.

static const int prio_to_weight[40] = {
/+x —20 x/ 88761, 71755, 56483, 46273, 36291,
/*x —15 %/ 29154, 23254, 18705, 14949, 11916,

/x -10 %/ 9548, 7620, 6100, 4904, 3906, Two jobs: A with nice

;* =3 *; 3121, 2501, 1991, 1586, 1277, value of -5, B with nice

« 0 %=/ 1024, 820, 655, 526, 423,

/+ 5 %/ 335, 272, 215, 172, 137, value of 0. sched_latency

/« 10 %=/ 110, 87, 70, 56, 45, is 48ms.What is the time
. /% 15 */ 36, 29, 23, 18, 15, slice of A and B?

. . welght,
Cime_slicep = — -sched_latency
—o Wwelght,

11/5/24 Mengwei Xu @ BUPT 54

Completely Fair Scheduler (CFS)

_ , welghty ,
vruntilme; = vruntime; + - -runtime;
welght,

weighty is the weight of process with default priority (1024)

static const int prio_to_weight[40] = {
/+x —20 x/ 88761, 71755, 56483, 46273, 36291,
/*x —15 %/ 29154, 23254, 18705, 14949, 11916,
/x —10 =/ 9548, 7620, 6100, 4904, 39060,
/~ =5 %/ 3121, 2501, 1991, 15860, 1277,
/ * 0 x/ 1024, 820, 655, 526, 423,
/ * 5 %/ 335, 212, 215, 172, 137,

/x 10 x/ 110, 87, 70, 56, 45,
/* 15 «/ 36, 29, 23, 18, 15,
}i
, , welght,
Cime_slicep = — -sched_latency
_o Wwelght,

11/5/24 Mengwei Xu @ BUPT 55

Completely Fair Scheduler (CFS)

_ , welghty ,
vruntilme; = vruntime; + : -runtime;
welght,

How those “magic

weighty is the weight of process with default priority (1024) . s
numbers are determined’?

static const int prio_to_weight[40] = {
/+x —20 x/ 88761, 71755, 56483, 46273, 36291,
/*x —15 %/ 29154, 23254, 18705, 14949, 11916,
/x —10 =/ 9548, 7620, 6100, 4904, 39060,
/~ =5 %/ 3121, 2501, 1991, 15860, 1277,
/ * 0 x/ 1024, 820, 655, 526, 423,

/* 5/ 335, 272, 215, 17z, 137, Think about 2 case:
/* 10 «/ 110, &7, 70, 26, 45, (1) A with nice value 0, B with nice value -5
/% 15 */ 36, 29, 23, 18, 15, (2) A with nice value 5, B with nice value 0
b Calculate how they will be scheduled
, , welght,
Cime_slicep = — -sched_latency
_o Wwelght,

11/5/24 Mengwei Xu @ BUPT 56

Completely Fair Scheduler (CFS)

* Implementing CFS

- The ops to be supported: (1) finding the process with lowest vruntime; (2)
insert/delete a process

* Approach# |: Ordered List
- Finding the next job: O(1)
- Insert/delete: O(n)

11/5/24 Mengwei Xu @ BUPT 57

Completely Fair Scheduler (CFS)

* Implementing CFS

- The ops to be supported: (1) finding the process with lowest vruntime; (2)
insert/delete a process

 Approach# |: Ordered List (14
- Finding the next job: O(I)
- Insert/delete: O(n) A/@\A
* Approach#2: Red-Black Tree
- Finding the next job: O(log n) Q Q Q
- Insert/delete: O(log n)
A node is either red or black
The root is black @ @
LAl leaves (NULL) are black

Both children of every red node are black
Every simple path from root to leaves contains the same number of black nodes.

11/5/24 Mengwei Xu @ BUPT 58

Real-Time Scheduling (RTS)

* Efficiency Is important but predictability is essential:
VWe need to predict with confidence worst case response times for systems
In RTS, performance guarantees are:
[Task- and/or class centric and often ensured a priori
In conventional systems, performance is:
O System/throughput oriented with post-processing (... wait and see ...)
Real-time Is about enforcing predictability, and does not equal fast computing!!!

e Hard Real-Time

- Attempt to meet all deadlines
- EDF (Earliest Deadline First), LLF (Least Laxity First), | |
RMS (Rate-Monotonic Scheduling), DM (Deadline Monotonic Scheduling)

e Soft Real-Time

- Attempt to meet deadlines with high probability
- Minimize miss ratio / maximize completion ratio (firm real-time)

- Important for multimedia applications
- CBS (Constant Bandwidth Server)

11/5/24 Mengwei Xu @ BUPT 59

Real-Time Scheduling (RTS)

* Tasks are preemptable, independent with arbitrary arrival (=release)
times

* Tasks have deadlines (D) and known computation times (C)

* Example Setup:

e
Tl D |
AC.
T2 Dzl
Yo
T3 b |

T4

11/5/24 Mengwei Xu @ BUPT 60

Scheduling on Multiprocessor

* Recall: the cache-memory system, and cache consistency (or coherency)

(A7 — 2

CPU CPU

Cache Cache

Memory

Scheduling on Multiprocessor

* What's wrong with a centralized MFQ?

r—» Queue N >
1
1
o e R Rl e 2o
1
1
r= .
|—> Queue 3 - >
r=m
i Queue 2 - ——»
Arrivals
te Queue 1 e e

11/5/24 Mengwei Xu @ BUPT 62

Scheduling on Multiprocessor

* What's wrong with a centralized MFQ?
- Contention for the MFQ lock

U The lock could become a bottleneck especially with large number of processors

- Cache coherence overhead

U The MFQ data structure will be modified often and cause cache miss when a processor

gets its lock to use MFQ

CPUO m ... (repeat) ...
CPU 1 I ... (repeat) ...

CPU 3 nC A.

11/5/24 Mengwei Xu @ BUPT

... (repeat) ...

.. (repeat) ...

Assuming we have 5 jobs (A,
B, C, D, E) running repeatedly
in order on 4 CPUs.

Bad cache hit ratio!

63

Scheduling on Multiprocessor

* What's wrong with a centralized MFQ?
- Contention for the MFQ lock

U The lock could become a bottleneck especially with large number of processors

- Cache coherence overhead

U The MFQ data structure will be modified often and cause cache miss when a processor
gets its lock to use MFQ

- Limrted cache reuse

A thread is likely to be scheduled on different processors, so the LI cache needs to be
fetched from the memory again

11/5/24 Mengwei Xu @ BUPT 64

Scheduling on Multiprocessor

* What's wrong with a centralized MFQ?
- Contention for the MFQ lock
- Cache coherence overhead
- Limited cache reuse

* Modern OSes use per-processor MFQ

o Affinity scheduling (ZEFIHE A &): a thread is always (re)scheduled to
the same processor

- Rebalancing across processors only happens when necessary

11/5/24 Mengwei Xu @ BUPT 65

How to Evaluate a Scheduling algorithm?

* Deterministic modeling

- Takes a predetermined workload and compute the performance of each
algorithm for that workload

* Queueing models (HEBA# /151 Y)
- Mathematical approach for handling stochastic workloads

- Commonly used in a variety of fields, including computer science,
telecommunications, operations research, and industrial engineering

* Implementation/Simulation:

- Build system which allows actual algorithms to be run against actual data — most
flexible/general

Summary of Scheduling Algorithms

* Round-Robin Scheduling:

- Give each thread a small amount of CPU time when it executes; cycle between
all ready threads

- Pros: Better for short jobs

* Shortest Job First (SJF) / Shortest Remaining Time First (SRTF):

- Run whatever job has the least amount of computation to do/least remaining
amount of computation to do

- Pros: Optimal (average response time)
- Cons: Hard to predict future, Unfair

* Multi-Level Feedback Scheduling:
- Multiple queues of different priorities and scheduling algorithms

- Automatic promotion/demotion of process priority in order to approximate
S|F/SRTF

11/5/24 Mengwei Xu @ BUPT 67

Summary of Scheduling Algorithms

* Lottery Scheduling:

- Give each thread a priority-dependent number of tokens (short tasks = more
tokens)

e Linux CFS

- Completely fair across processes (always assign to the one with least running
time)
- Dynamically adjust time slice of each process

- Using priority (nice level) to control the assignment

* Real-time scheduling

- Need to meet a deadline, predictability essential
- Earliest Deadline First (EDF) and Rate Monotonic (RM) scheduling

11/5/24 Mengwei Xu @ BUPT 68

Summary of Scheduling Algorithms

* This course only covers very basic knowledge of scheduling
- The schedulers used in real OSes are more complex
- Choosing a proper schedule depends on many factors: hardware, workloads, etc..

- Note: almost every hardware resource needs scheduler.
O GPU, disk, network, etc..

- Scheduling is common in real-world life
L Use what you learned to solve them!
U Example # | Hospital emergencies!
O Example #2: Air traffic control?
O Example #3: Supermarket checkout?
O Example #4: Print jobs in a printer?
O Example #5: Control system in a rocket?

O Example #6: Engine control unit in an automotive application

Homework

* Some simple code about MLFQ. Check out our website.

11/5/24 Mengwei Xu @ BUPT 70

