
Operating Systems
Lecture 9

Scheduling

Prof. Mengwei Xu

11/5/24 Mengwei Xu @ BUPT 2

• Memory as cache for secondary disk

Recap: Cache Hierarchy

CPU TLB Cache Memory Disk

11/5/24 Mengwei Xu @ BUPT 3

• Modern programs require a lot of physical memory, but they don’t use
all their memory all of the time
- 90-10 rule: programs spend 90% of their time in 10% of their code
- Wasteful to require all of user’s code to be in memory

• Solution: use main memory as cache for disk
- “lazy” memory allocation

• An illusion of infinite memory
- In-use virtual memory can be bigger than physical memory
- Combined memory of running processes much larger than physical memory

q More programs fit into memory, allowing more concurrency
- Principle: page table for transparent management

Recap: Demand Paging (需求分页)

11/5/24 Mengwei Xu @ BUPT 4

• What is block size?
- 1 page

• What is organization of this cache (i.e. direct-mapped, set-associative, fully-
associative)?
- Fully associative: arbitrary virtual ® physical mapping

• How do we find a page in the cache when look for it?
- First check TLB, then page-table traversal

• What is page replacement policy? (i.e. LRU, Random…)
- This requires more explanation… (kinda LRU)

• What happens on a miss?
- Go to lower level to fill miss (i.e. disk)

• What happens on a write? (write-through, write back)
- Write-back – need dirty bit!

Recap: Demand Paging as Cache

11/5/24 Mengwei Xu @ BUPT 5

• When program accesses an invalid address
1. [MMU]TLB miss; full page table lookup
2. [MMU + OS]Trapping into page fault handler
3. [OS] Convert virtual address to file offset
4. [OS] Allocate a new page frame in memory
5. [OS] Read data from disk to the memory (blocked)
6. [CPU] Disk interrupt when read completes
7. [OS] Updating page table by marking the entry as valid
8. [OS] Resume process
9. [MMU]TLB miss; full page table lookup
10. [MMU]TLB update

Recap: Implementation of mmap

11/5/24 Mengwei Xu @ BUPT 6

Recap: Implementation of mmap

11/5/24 Mengwei Xu @ BUPT 7

• Clocking algorithm: approximating LRU
• Implementation with the use bit

- Initialized to 0 in page table
- Set to 1 whenever there is a page access

• When we need to evict a page, we look
at the page under the hand:
- If its use bit = 1, clear it and move the hand,

repeat;
- If its use bit = 0, evict it

Recap: Page Eviction Policy

1

2

4

7

10

3

5

68

9

11

12

Page reference stream:

Use bit = 0

Use bit = 1

11/5/24 Mengwei Xu @ BUPT 8

• Nth chance algorithm: Give page N chances
- OS keeps counter per page: # sweeps
- On page fault, OS checks use bit:

q 1 ® clear use and also clear counter (used in last sweep)
q 0 ® increment counter; if count=N, replace page

- Means that clock hand has to sweep by N times without page being used before page is replaced
• How do we pick N?

- Why pick large N? Better approximation to LRU
q If N ~ 1K, really good approximation

- Why pick small N? More efficient
q Otherwise might have to look a long way to find free page

• What about dirty pages?
- Takes extra overhead to replace a dirty page, so give dirty pages an extra chance before replacing?
- Common approach:

q Clean pages, use N=1
q Dirty pages, use N=2 (and write back to disk when N=1)

Recap: Nth Chance Version of Clock Algorithm

11/5/24 Mengwei Xu @ BUPT 9

• Which bits of a PTE entry are useful to us?
- Use: Set when page is referenced; cleared by clock algorithm
- Modified: set when page is modified, cleared when page written to disk
- Valid: ok for program to reference this page
- Read-only: ok for program to read page, but not modify

qFor example for catching modifications to code pages!

• Do we really need hardware-supported “modified” bit?
- No. Can emulate it (BSD Unix) using read-only bit

q Initially, mark all pages as read-only, even data pages
q On write, trap to OS. OS sets software “modified” bit, and marks page as read-write.
qWhenever page comes back in from disk, mark read-only

Recap: Details of Clock Algorithms

11/5/24 Mengwei Xu @ BUPT 10

• Why we need scheduling? Multitasks and Concurrency.
• Scheduling is only useful when there is not enough resources
• Preemption (抢占) is the basic assumption for fine-grained scheduling

- Either by timer interrupts or other kinds of interrupts
• Who schedules processes/threads?

- Mostly by OS.
- User-level thread libraries schedule the threads by themselves.

Scheduling (调度) Concept

11/5/24 Mengwei Xu @ BUPT 11

• Minimize Response Time
- Minimize elapsed time to do an operation (or job)
- Response time is what the user sees:

qTime to echo a keystroke in editor
qTime to compile a program
q Real-time tasks: Must meet deadlines imposed by World

Scheduling Policy Goals (1/3)

11/5/24 Mengwei Xu @ BUPT 12

• Minimize Response Time
• Maximize Throughput

- Maximize operations (or jobs) per second
- Throughput related to response time, but not identical:

q Minimizing response time will lead to more context switching than if you
only maximized throughput

- Two parts to maximizing throughput
q Minimize overhead (for example, context-switching)
q Efficient use of resources (CPU, disk, memory, etc)

Scheduling Policy Goals (2/3)

11/5/24 Mengwei Xu @ BUPT 13

• Minimize Response Time
• Maximize Throughput
• Fairness

- Share CPU among users in some equitable way
- Fairness is not minimizing average response time:

q Better average response time by making system less fair

Scheduling Policy Goals (3/3)

11/5/24 Mengwei Xu @ BUPT 14

• First-Come, First-Served (FCFS,先到先服务)
- Also “First In, First Out” (FIFO,先进先出) or “Run until done”

q In early systems, FCFS meant one program scheduled until done
q Now, means keep CPU until thread blocks

• Example: Process Burst Time
 P1 24
 P2 3
 P3 3

- Suppose processes arrive in the order: P1 , P2 , P3

The Gantt Chart (甘特图) for the schedule is:

First-Come, First-Served (FCFS) Scheduling

P1 P2 P3

24 27 300

11/5/24 Mengwei Xu @ BUPT 15

• Example continued:

- Waiting time for P1 = 0; P2 = 24; P3 = 27
- Average waiting time: (0 + 24 + 27)/3 = 17
- Average Completion time: (24 + 27 + 30)/3 = 27

• Convoy effect (护航效应): short process behind long process

First-Come, First-Served (FCFS) Scheduling

P1 P2 P3

24 27 300

11/5/24 Mengwei Xu @ BUPT 16

• Example continued:
- Suppose that processes arrive in order: P2 , P3 , P1 Now, we have:

- Waiting time for P1 = 6; P2 = 0; P3 = 3
- Average waiting time: (6 + 0 + 3)/3 = 3
- Average Completion time: (3 + 6 + 30)/3 = 13

• In second case:
- Average waiting time is much better (before it was 17)
- Average completion time is better (before it was 27)

• FIFO Pros and Cons:
- Simple (+)
- Short jobs get stuck behind long ones (-)

qSafeway: Getting milk, always stuck behind cart full of small items

First-Come, First-Served (FCFS) Scheduling

P1P3P2

63 300

11/5/24 Mengwei Xu @ BUPT 17

• Shortest Job First (短任务优先) Scheduling
- Always schedule the job with the shortest remaining time (so sometimes it’s

also called shortest-remaining-time-first, SRTF)
- It theoretically minimizes the average response time, why?

Shortest Job First (SJF) Scheduling

P1P3P2

63 300

11/5/24 Mengwei Xu @ BUPT 18

• Shortest Job First (短任务优先) Scheduling
- Always schedule the job with the shortest remaining time (so sometimes it’s

also called shortest-remaining-time-first, SRTF)
- It theoretically minimizes the average response time, why?

• Comparison of SRTF with FCFS
- What if all jobs the same length?

q SRTF becomes the same as FCFS (i.e. FCFS is best can do if all jobs the
same length)

- What if jobs have varying length?
q SRTF: short jobs not stuck behind long ones

Shortest Job First (SJF) Scheduling

11/5/24 Mengwei Xu @ BUPT 19

• Shortest Job First (短任务优先) Scheduling
- Always schedule the job with the shortest remaining time (so sometimes it’s

also called shortest-remaining-time-first, SRTF)
- It theoretically minimizes the average response time, why?

• Con#1: starvation (饥饿)
- If small jobs keep coming, the long jobs will not be served
- Fairness issue

• Con#2: implementation
- It’s hard to know the task remaining time

Shortest Job First (SJF) Scheduling

11/5/24 Mengwei Xu @ BUPT 20

• Round Robin (轮询调度) Scheme
- Each process gets a small unit of CPU time (time quantum), usually 10-100

milliseconds
- After quantum expires, the process is preempted and added to the end of the

ready queue.
• n processes in ready queue and time quantum is q Þ

q Each process gets 1/n of the CPU time
q In chunks of at most q time units
q No process waits more than (n-1)q time units

Round Robin (RR) Scheduling

11/5/24 Mengwei Xu @ BUPT 21

• Example: Process Burst Time
 P1 53
 P2 8
 P3 68
 P4 24
- quantum=20
- Average waiting time?
- Average completion time?

Round Robin (RR) Scheduling

11/5/24 Mengwei Xu @ BUPT 22

• Example: Process Burst Time
 P1 53
 P2 8
 P3 68
 P4 24
- The Gantt chart (quantum=20) is:

- Waiting time for P1=(68-20)+(112-88)=72
 P2=(20-0)=20
 P3=(28-0)+(88-48)+(125-108)=85
 P4=(48-0)+(108-68)=88

- Average waiting time = (72+20+85+88)/4=66¼
- Average completion time = (125+28+153+112)/4 = 104½

Round Robin (RR) Scheduling

P1
0 20

P2
28

P3
48

P4
68

P1
88

P3
108

P4 P1 P3 P3
112 125 145 153

11/5/24 Mengwei Xu @ BUPT 23

• Thus, Round-Robin Pros and Cons:
- Better for short jobs, Fair (+)
- Context-switching time adds up for long jobs (-)

Round Robin (RR) Scheduling

11/5/24 Mengwei Xu @ BUPT 24

• Thus, Round-Robin Pros and Cons:
- Better for short jobs, Fair (+)
- Context-switching time adds up for long jobs (-)

• How do you choose time slice?
- Too large: Response time suffers

qWhat if infinite (¥)? Falls back to FIFO
- Too small:Throughput suffers

Round Robin (RR) Scheduling

11/5/24 Mengwei Xu @ BUPT 25

• Thus, Round-Robin Pros and Cons:
- Better for short jobs, Fair (+)
- Context-switching time adds up for long jobs (-)

• How do you choose time slice?
• Actual choices of timeslice:

- Initially, UNIX timeslice one second:
qWorked ok when UNIX was used by one or two people.
qWhat if three compilations going on? 3 seconds to echo each keystroke!

- Need to balance short-job performance and long-job throughput:
qTypical time slice today is between 10ms – 100ms
qTypical context-switching overhead is 0.1ms – 1ms
q Roughly 1% overhead due to context-switching

Round Robin (RR) Scheduling

11/5/24 Mengwei Xu @ BUPT 26

• Assuming zero-cost context-switching time, is RR always better than FCFS?
• Simple example: 10 jobs, each take 100s of CPU time

 RR scheduler quantum of 1s
 All jobs start at the same time
• Completion Times:

- Average response time is much worse under RR!
q Bad when all jobs same length

• Also: Cache state must be shared between all jobs with RR but can be
devoted to each job with FIFO
- Total time for RR longer even for zero-cost switch!

Comparing FCFS and RR

Job # FIFO RR
1 100 991
2 200 992
… … …
9 900 999
10 1000 1000

11/5/24 Mengwei Xu @ BUPT 27

Choice of Time Quantum for RR
P2
[8]

P4
[24]

P1
[53]

P3
[68]

0 8 32 85 153

Best FCFS:

Quantum

Completion
Time

Wait
Time

AverageP4P3P2P1

6257852284Q = 1

104½11215328125Q = 20

100½8115330137Q = 1

66¼ 88852072Q = 20

31¼885032Best FCFS

121¾14568153121Worst FCFS

69½32153885Best FCFS
83½121014568Worst FCFS

95½8015316133Q = 8

57¼5685880Q = 8

99½9215318135Q = 10

99½8215328135Q = 5

61¼68851082Q = 10

61¼58852082Q = 5

11/5/24 Mengwei Xu @ BUPT 28

• Strict Priority Scheduling (严格优先级调度)
- Always execute highest-priority runnable jobs to completion
- Each queue can be processed in RR with some time-quantum

• Problems:
- Starvation: Lower priority jobs don’t get to run because higher priority jobs
- Deadlock: Priority Inversion (优先级翻转)

q Not strictly a problem with priority scheduling, but happens when low
priority task has lock needed by high-priority task

Strict Priority Scheduling
Priority 3

Priority 2

Priority 1

Priority 0 Job 5 Job 6

Job 1 Job 2 Job 3

Job 7

Job 4

11/5/24 Mengwei Xu @ BUPT 29

• Strict Priority Scheduling (严格优先级调度)
- Always execute highest-priority runnable jobs to completion
- Each queue can be processed in RR with some time-quantum

• Problems:
- Starvation: Lower priority jobs don’t get to run because higher priority jobs
- Deadlock: Priority Inversion (优先级翻转)

• How to fix? Dynamic priority
- Dynamic priorities – adjust base-level priority up or down based on heuristics

about interactivity, locking, burst behavior, etc…

Strict Priority Scheduling
Priority 3

Priority 2

Priority 1

Priority 0 Job 5 Job 6

Job 1 Job 2 Job 3

Job 7

Job 4

11/5/24 Mengwei Xu @ BUPT 30

• Tasks periodic with period P and computation C in each period: (P, C)
• Preemptive priority-based dynamic scheduling
• Each task is assigned a (current) priority based on how close the

absolute deadline is
• The scheduler always schedules the active task with the closest absolute

deadline

Earliest Deadline First (EDF)

0 5 10 15

)1,4(1 =T

)2,5(2 =T

)2,7(3 =T

11/5/24 Mengwei Xu @ BUPT 31

• What about fairness?
- Strict fixed-priority scheduling between queues is unfair (run highest, then next,

etc):
q Long running jobs may never get CPU
q In Multics, shut down machine, found 10-year-old job

- Must give long-running jobs a fraction of the CPU even when there are shorter
jobs to run

- Tradeoff: fairness gained by hurting avg response time!

Scheduling Fairness

11/5/24 Mengwei Xu @ BUPT 32

• How to implement fairness?
- Could give each queue some fraction of the CPU

qWhat if one long-running job and 100 short-running ones?
q Like express lanes in a supermarket—sometimes express lanes get so long,

get better service by going into one of the other lines
- Could increase priority of jobs that don’t get service

qWhat is done in some variants of UNIX
qThis is ad hoc—what rate should you increase priorities?
q And, as system gets overloaded, no job gets CPU time, so everyone

increases in priorityÞInteractive jobs suffer

Scheduling Fairness

11/5/24 Mengwei Xu @ BUPT 33

• If every tasks need the same resource, fairness is easy: RR.
• Yet, tasks may demand different: compute-bound vs. I/O bound
• Max-Min fairness: iteratively maximize the minimum allocation given to a

particular process (or threads/users/applications) until all resources are
assigned
- Mostly used in network

Scheduling Fairness

11/5/24 Mengwei Xu @ BUPT 34

• Multi-level Feedback Queue (MFQ,多级反馈队列调度)
- Achieves responsiveness (short jobs quickly as SJF), low overhead (minimizing

the preemptions and scheduling decision time), and starvation-free (as RR), and
fairness (approximately max-min fair share).
qYet, it does not perfectly achieve any of these goals.

- Widely used in commercial OSes such as Windows, MacOS, and Linux.

• Assuming a mix of two kinds of workloads
① Interactive tasks (e.g., waiting for user keyboard input): using CPU for a short

time, then yield for I/O waiting. Low latency is critical.
② CPU-intensive tasks (e.g., compressing files): using CPU for a long period of

time. The response time often does not matter much.

Multi-level Feedback Queue (MFQ) Scheduling

11/5/24 Mengwei Xu @ BUPT 35

• A naïve version of MFQ: maintaining many tasks queues with different
priorities, and use following schedule rules.
- Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).
- Rule 2: If Priority(A) = Priority(B), A & B run in RR.

• The key here is how to set the priority.
- Intuitively, if a job repeatedly relinquishes the CPU while waiting for input from

the keyboard, it shall be kept in high priority.
- Otherwise, if a job uses CPU intensively for long periods of time, its priority shall

be reduced.

Multi-level Feedback Queue (MFQ) Scheduling

11/5/24 Mengwei Xu @ BUPT 36

• A naïve version of MFQ: maintaining many tasks queues with different
priorities, and use following schedule rules.
- Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).
- Rule 2: If Priority(A) = Priority(B), A & B run in RR.

• Our solution: assign a quota for each job at a given priority level, and
reduces its priority once the quota is used up.
- Rule 3: When a job enters the system, it is placed at the highestpriority (the

topmost queue).
- Rule 4a: If a job uses up its allotment while running, its priority isreduced (i.e., it

moves down one queue).
- Rule 4b: If a job gives up the CPU (for example, by performing an I/O operation)

before the allotment is up, it stays at the samepriority level (i.e., its allotment is
reset).

Multi-level Feedback Queue (MFQ) Scheduling

11/5/24 Mengwei Xu @ BUPT 37

• A few illustrative examples of our naïve MFQ design.

Multi-level Feedback Queue (MFQ) Scheduling

(a) A single long-running job (b) A single long-running job
and a short-running job

(c) A single long-running job
and an interactive job that
only uses CPU for 1ms per
time then waits for I/O

11/5/24 Mengwei Xu @ BUPT 38

• There are many issues with this naïve version of MFQ.
- Starvation: if there are “too many” interactive jobs in the system, they will

consume all CPU time, and thus long-running jobs will starve.

Multi-level Feedback Queue (MFQ) Scheduling

11/5/24 Mengwei Xu @ BUPT 39

• There are many issues with this naïve version of MFQ.
- Starvation: if there are “too many” interactive jobs in the system, they will

consume all CPU time, and thus long-running jobs will starve.
• Solution#1: priority boost

- Rule 5: After some time period S, move all the jobs in the systemto the topmost
queue.

Multi-level Feedback Queue (MFQ) Scheduling

11/5/24 Mengwei Xu @ BUPT 40

• There are many issues with this naïve version of MFQ.
- Starvation: if there are “too many” interactive jobs in the system, they will

consume all CPU time, and thus long-running jobs will starve.
• Solution#1: priority boost

- Rule 5: After some time period S, move all the jobs in the systemto the topmost
queue.

- S shall be neither too large or too small. Why?

Multi-level Feedback Queue (MFQ) Scheduling

11/5/24 Mengwei Xu @ BUPT 41

• There are many issues with this naïve version of MFQ.
- Starvation: if there are “too many” interactive jobs in the system, they will

consume all CPU time, and thus long-running jobs will starve.
• Solution#1: priority boost

- Rule 5: After some time period S, move all the jobs in the systemto the topmost
queue.

- S shall be neither too large or too small. Why?
• Solution#2: time slice across queues

- each queue gets a certain amount of CPU time
- e.g., 70% to highest, 20% next, 10% lowest

• More solutions..

Multi-level Feedback Queue (MFQ) Scheduling

11/5/24 Mengwei Xu @ BUPT 42

• There are many issues with this naïve version of MFQ.
- Starvation: if there are “too many” interactive jobs in the system, they will

consume all CPU time, and thus long-running jobs will starve.
- Countermeasure: user action that can foil intent of OS designers, e.g., put in a

bunch of meaningless I/O to keep job’s priority high.
- How to parameterize the scheduler : how many queues should there be? How

big should the time slice be per queue?
- More..

• Think of possible solutions to them?

Multi-level Feedback Queue (MFQ) Scheduling

11/5/24 Mengwei Xu @ BUPT 43

• To further extend the MFQ design: Each queue has its own scheduling
parameters or even different algorithms!

q e.g. foreground – RR, background – FCFS
q Sometimes multiple RR priorities with quantum increasing exponentially

(highest:1ms, next: 2ms, next: 4ms, etc)

• Adjust each job’s priority as follows (details vary)
- Job starts in highest priority queue
- If timeout expires, drop one level
- If timeout doesn’t expire, push up one level (or stay at the same one)

Multi-level Feedback Queue (MFQ) Scheduling

11/5/24 Mengwei Xu @ BUPT 44

• A test

Multi-level Feedback Queue (MFQ) Scheduling

11/5/24 Mengwei Xu @ BUPT 45

• This type of scheduler aims to guarantee that each job obtain a certain
percentage of CPU time.
- Also known as “proportional-share scheduler.

• Next, we will discuss two types of fair-share scheduler.
- Lottery scheduling
- The Linux Completely Fair Scheduler (CFS)

Fair-share Scheduler

11/5/24 Mengwei Xu @ BUPT 46

• Lottery Scheduling
- Give each job some number of lottery tickets
- On each time slice, randomly pick a winning ticket
- On average, CPU time is proportional to number of tickets given to each job

(but not deterministically!)
• Assuming there are two jobs: A with 75 tickets, B with 25 tickets

- Here, B gets run 4 out of 20 time slices (20%).
- With more tries, B is more likely to get 25% slices.

Lottery Scheduling

11/5/24 Mengwei Xu @ BUPT 47

• Lottery Scheduling
- Give each job some number of lottery tickets
- On each time slice, randomly pick a winning ticket
- On average, CPU time is proportional to number of tickets given to each job

• How to assign tickets?
- To approximate SRTF, short running jobs get more, long running jobs get fewer
- To avoid starvation, every job gets at least one ticket (everyone makes progress)

• Advantage over strict priority scheduling: behaves gracefully as load
changes
- Adding or deleting a job affects all jobs proportionally, independent of how

many tickets each job possesses

Lottery Scheduling

11/5/24 Mengwei Xu @ BUPT 48

• Lottery Scheduling Example
- Assume short jobs get 10 tickets, long jobs get 1 ticket

Lottery Scheduling

short jobs/

long jobs
% of CPU each
short jobs gets

% of CPU each
long jobs gets

1/1 ?? ??

0/2 ?? ??

2/0 ?? ??

10/1 ?? ??

1/10 ?? ??

11/5/24 Mengwei Xu @ BUPT 49

• Lottery Scheduling Example
- Assume short jobs get 10 tickets, long jobs get 1 ticket

Lottery Scheduling

short jobs/

long jobs
% of CPU each
short jobs gets

% of CPU each
long jobs gets

1/1 91% 9%

0/2 N/A 50%

2/0 50% N/A

10/1 9.9% 0.99%

1/10 50% 5%

11/5/24 Mengwei Xu @ BUPT 50

• Implementing lottery scheduling is amazingly easy!
- One of the important feature of it.

• You only need
1. A good random number generator
2. A data structure to track the processes of the system and the total number of

tickets

Lottery Scheduling

11/5/24 Mengwei Xu @ BUPT 51

Lottery Scheduling

An optimization:
organize the list
in sorted order

11/5/24 Mengwei Xu @ BUPT 52

• The default Linux scheduler since v2.6.23 (2007).
- The goal of CFS: to fairly divide a CPU evenly among all competing processes.

• CFS uses a counting-based technique known as vir tual runtime
(vruntime)
- As each process runs, it accumulates vruntime, e.g., in proportion with the

physical (real) time.
- When a scheduling decision occurs, CFS will pick the process with the lowest

vruntime to run next.
• How does CFS know when to stop the running process?

- The scheduling time slice. Either too large or small. Why?

Completely Fair Scheduler (CFS)

11/5/24 Mengwei Xu @ BUPT 53

• CFS decides the scheduling interval based on the number of currently
running processes.
- sched_latency divided by the number of processes

q why?
- E.g., 48 milliseconds / 4 processes = 12 milliseconds
- What if there are too many processes? Set a minimal value of time slice:

min_granularity.

Completely Fair Scheduler (CFS)

11/5/24 Mengwei Xu @ BUPT 54

• CFS also enables controls over process priority, enabling users to give
some processes a higher share of the CPU.
- Using a UNIX mechanism known as the nice level of a process.
- Larger nice, lower priority.

Completely Fair Scheduler (CFS)

Two jobs: A with nice
value of -5, B with nice
value of 0. sched_latency
is 48ms. What is the time
slice of A and B?

11/5/24 Mengwei Xu @ BUPT 55

Completely Fair Scheduler (CFS)

weight0 is the weight of process with default priority (1024)

11/5/24 Mengwei Xu @ BUPT 56

Completely Fair Scheduler (CFS)

weight0 is the weight of process with default priority (1024)
How those “magic
numbers are determined”?

Think about 2 case:
(1) A with nice value 0, B with nice value -5
(2) A with nice value 5, B with nice value 0
Calculate how they will be scheduled

11/5/24 Mengwei Xu @ BUPT 57

• Implementing CFS
- The ops to be supported: (1) finding the process with lowest vruntime; (2)

insert/delete a process
• Approach#1: Ordered List

- Finding the next job: O(1)
- Insert/delete: O(n)

Completely Fair Scheduler (CFS)

11/5/24 Mengwei Xu @ BUPT 58

• Implementing CFS
- The ops to be supported: (1) finding the process with lowest vruntime; (2)

insert/delete a process
• Approach#1: Ordered List

- Finding the next job: O(1)
- Insert/delete: O(n)

• Approach#2: Red-Black Tree
- Finding the next job: O(log n)
- Insert/delete: O(log n)

qA node is either red or black
qThe root is black
qAll leaves (NULL) are black
qBoth children of every red node are black
qEvery simple path from root to leaves contains the same number of black nodes.

Completely Fair Scheduler (CFS)

11/5/24 Mengwei Xu @ BUPT 59

• Efficiency is important but predictability is essential:
- We need to predict with confidence worst case response times for systems
- In RTS, performance guarantees are:

q Task- and/or class centric and often ensured a priori
- In conventional systems, performance is:

q System/throughput oriented with post-processing (… wait and see …)
- Real-time is about enforcing predictability, and does not equal fast computing!!!

• Hard Real-Time
- Attempt to meet all deadlines
- EDF (Earliest Deadline First), LLF (Least Laxity First),

RMS (Rate-Monotonic Scheduling), DM (Deadline Monotonic Scheduling)
• Soft Real-Time

- Attempt to meet deadlines with high probability
- Minimize miss ratio / maximize completion ratio (firm real-time)
- Important for multimedia applications
- CBS (Constant Bandwidth Server)

Real-Time Scheduling (RTS)

11/5/24 Mengwei Xu @ BUPT 60

• Tasks are preemptable, independent with arbitrary arrival (=release)
times
• Tasks have deadlines (D) and known computation times (C)
• Example Setup:

Real-Time Scheduling (RTS)

11/5/24 Mengwei Xu @ BUPT 61

• Recall: the cache-memory system, and cache consistency (or coherency)
(缓存一致性)

Scheduling on Multiprocessor

CPU

Cache

Memory

CPU

Cache

11/5/24 Mengwei Xu @ BUPT 62

• What’s wrong with a centralized MFQ?

Scheduling on Multiprocessor

11/5/24 Mengwei Xu @ BUPT 63

• What’s wrong with a centralized MFQ?
- Contention for the MFQ lock

qThe lock could become a bottleneck especially with large number of processors
- Cache coherence overhead

qThe MFQ data structure will be modified often and cause cache miss when a processor
gets its lock to use MFQ

Scheduling on Multiprocessor

Assuming we have 5 jobs (A,
B, C, D, E) running repeatedly
in order on 4 CPUs.

Bad cache hit ratio!

11/5/24 Mengwei Xu @ BUPT 64

• What’s wrong with a centralized MFQ?
- Contention for the MFQ lock

qThe lock could become a bottleneck especially with large number of processors
- Cache coherence overhead

qThe MFQ data structure will be modified often and cause cache miss when a processor
gets its lock to use MFQ

- Limited cache reuse
q A thread is likely to be scheduled on different processors, so the L1 cache needs to be

fetched from the memory again

Scheduling on Multiprocessor

11/5/24 Mengwei Xu @ BUPT 65

• What’s wrong with a centralized MFQ?
- Contention for the MFQ lock
- Cache coherence overhead
- Limited cache reuse

• Modern OSes use per-processor MFQ
• Affinity scheduling (亲和性调度): a thread is always (re)scheduled to

the same processor
- Rebalancing across processors only happens when necessary

Scheduling on Multiprocessor

11/5/24 Mengwei Xu @ BUPT 66

• Deterministic modeling
- Takes a predetermined workload and compute the performance of each

algorithm for that workload
• Queueing models (排队论/模型)

- Mathematical approach for handling stochastic workloads
- Commonly used in a variety of fields, including computer science,

telecommunications, operations research, and industrial engineering
• Implementation/Simulation:

- Build system which allows actual algorithms to be run against actual data – most
flexible/general

How to Evaluate a Scheduling algorithm?

11/5/24 Mengwei Xu @ BUPT 67

• Round-Robin Scheduling:
- Give each thread a small amount of CPU time when it executes; cycle between

all ready threads
- Pros: Better for short jobs

• Shortest Job First (SJF) / Shortest Remaining Time First (SRTF):
- Run whatever job has the least amount of computation to do/least remaining

amount of computation to do
- Pros: Optimal (average response time)
- Cons: Hard to predict future, Unfair

• Multi-Level Feedback Scheduling:
- Multiple queues of different priorities and scheduling algorithms
- Automatic promotion/demotion of process priority in order to approximate

SJF/SRTF

Summary of Scheduling Algorithms

11/5/24 Mengwei Xu @ BUPT 68

• Lottery Scheduling:
- Give each thread a priority-dependent number of tokens (short tasks Þ more

tokens)
• Linux CFS

- Completely fair across processes (always assign to the one with least running
time)

- Dynamically adjust time slice of each process
- Using priority (nice level) to control the assignment

• Real-time scheduling
- Need to meet a deadline, predictability essential
- Earliest Deadline First (EDF) and Rate Monotonic (RM) scheduling

Summary of Scheduling Algorithms

11/5/24 Mengwei Xu @ BUPT 69

• This course only covers very basic knowledge of scheduling
- The schedulers used in real OSes are more complex
- Choosing a proper schedule depends on many factors: hardware, workloads, etc..
- Note: almost every hardware resource needs scheduler..

q GPU, disk, network, etc..
- Scheduling is common in real-world life

q Use what you learned to solve them!
q Example #1: Hospital emergencies?
q Example #2:Air traffic control?
q Example #3: Supermarket checkout?
q Example #4: Print jobs in a printer?
q Example #5: Control system in a rocket?
q Example #6: Engine control unit in an automotive application

Summary of Scheduling Algorithms

11/5/24 Mengwei Xu @ BUPT 70

• Some simple code about MLFQ. Check out our website.

Homework

